Executing a
Web Scraping Project

How do | scrape webpages?
How do | crawl webpages?

Scraping a Single Webpage Using R
Scraping and crawling are two distinct problems, so scraping first

Prefer APIs, if APIs get the job done
Remember that APIs return structured data, which is always better

Scraping is for creating meaningful variables out of unstructured or semi-structured
data

Data retrieved by an API is definitely “ok” with the owner; scraped data, maybe
not

Three major approaches to scraping data
Find the information you need in the DOM (XPaths)
Grab the information you need by filtering out what you don’t (regular expressions)
Filtering information from within tags (XPaths + regular expressions)

Extracting What You Want from HTML Documents

The first step to scraping is completely understanding how the page is
structured

Use Google Chrome’s “Inspect” tool and “View Page Source” to explore the
DOM

Hunt for “unique identifiers” given the DOM that can be used to specify the
particular pieces of information you want

To start, let’s scrape the titles and authors of all the articles appearing in the
most recent TIP using R




Crawling Across Multiple Documents

Crawling refers to the page-by-page traversal of a particular target set of
webpages (also called spidering)

Can be very specific, e.g., a list of webpages to consider

Can be very general, e.g., a domain name

For maximum data quality with the least headaches, you usually want the most
specific criteria that get you all the data you want

If possible, generate a list of specific pages

If not, you’ll need to create an algorithm
Involves recursively scraping all of the links on every page of a target site
Usually includes both inclusionary criteria and exclusionary criteria

Crawling the Current Issue of TIP

Starting at , how would you develop rules for
inclusion and exclusion?

First, determine inclusionary criteria

Mouseover all links to the sorts of pages you’re interested in, and see what’s in
common between them

Alternatively, scrape all the links on a single page and look at them
You've already done it! Let’s look at that CSV again

Second, determine exclusionary criteria
Most common when you have modified links for printing or special views, e.g
Vs

Let’stry itinR

Crawling then Scraping

This was the easiest type of crawling: there is a single link of URLs that you can
scrape individually

Recursive crawling is the hardest: any webpage you crawl may contain new
links that in turn need to be crawled. To do this, you’ll need to:

Crawl an initial set of webpages/link

Within each of those webpages, scrape all embedded links

Process links according to inclusionary/exclusionary rules

Create a new list of “scrape next” links

Return to step 1 with new list




This is Why You Want an API

Crawling/scraping is more complicated than API requests because you are
restricted by:
Often poorly written webpages that are non-compliant with the HTML standards
(to see if you’re crazy, check
Nonsensical pagination and naming conventions
Dynamic webpages that don’t create distinct URLs

Server-side restrictions, such as crawling speed
Your own coding skill, attention to detail, and patience
— s et Yok Bimen =3
R is also not particularly - n ’
well-suited for crawling

This is where | suggest you turn g ot
to the scrapy library in Python For Big-Data Scientists, Janitor
Work' fs Key Hardle to Insights

e o oocoe

To Learn More Technical Bits

For general information about both R and Python, | strongly recommend

General Crawling/Scraping Frameworks
To learn how to use scrapy with Python, | recommend my tutorial:

The other big library for web crawling/scraping in Python is Beautiful Soup:

Parsing
To learn basic HTML and CSS:
To learn how to use XPath:
To learn how to use regular expressions:




