
1

Executing a
Web Scraping Project

How do I scrape webpages?
How do I crawl webpages?

41

42

 Scraping and crawling are two distinct problems, so scraping first

 Prefer APIs, if APIs get the job done
 Remember that APIs return structured data, which is always better
 Scraping is for creating meaningful variables out of unstructured or semi-structured

data
 Data retrieved by an API is definitely “ok” with the owner; scraped data, maybe

not

 Three major approaches to scraping data
 Find the information you need in the DOM (XPaths)
 Grab the information you need by filtering out what you don’t (regular expressions)
 Filtering information from within tags (XPaths + regular expressions)

Scraping a Single Webpage Using R

43

 The first step to scraping is completely understanding how the page is
structured

 Use Google Chrome’s “Inspect” tool and “View Page Source” to explore the
DOM
 Hunt for “unique identifiers” given the DOM that can be used to specify the

particular pieces of information you want

 To start, let’s scrape the titles and authors of all the articles appearing in the
most recent TIP using R:
http://my.siop.org/tipdefault

Extracting What You Want from HTML Documents

2

44

 Crawling refers to the page-by-page traversal of a particular target set of
webpages (also called spidering)
 Can be very specific, e.g., a list of webpages to consider
 Can be very general, e.g., a domain name
 For maximum data quality with the least headaches, you usually want the most

specific criteria that get you all the data you want

 If possible, generate a list of specific pages
 If not, you’ll need to create an algorithm

 Involves recursively scraping all of the links on every page of a target site
 Usually includes both inclusionary criteria and exclusionary criteria

Crawling Across Multiple Documents

45

 Starting at http://my.siop.org/tipdefault, how would you develop rules for
inclusion and exclusion?

 First, determine inclusionary criteria
 Mouseover all links to the sorts of pages you’re interested in, and see what’s in

common between them
 Alternatively, scrape all the links on a single page and look at them

 You’ve already done it! Let’s look at that CSV again

 Second, determine exclusionary criteria
 Most common when you have modified links for printing or special views, e.g.,

http://somewhere.com/link.asp?id=1232312 vs
http://somewhere.com/link.asp?id=1232312&print=TRUE

 Let’s try it in R

Crawling the Current Issue of TIP

46

 This was the easiest type of crawling: there is a single link of URLs that you can
scrape individually

 Recursive crawling is the hardest: any webpage you crawl may contain new
links that in turn need to be crawled. To do this, you’ll need to:
 Crawl an initial set of webpages/link
 Within each of those webpages, scrape all embedded links
 Process links according to inclusionary/exclusionary rules
 Create a new list of “scrape next” links
 Return to step 1 with new list

Crawling then Scraping

3

47

 Crawling/scraping is more complicated than API requests because you are
restricted by:
 Often poorly written webpages that are non-compliant with the HTML standards

(to see if you’re crazy, check https://validator.w3.org)
 Nonsensical pagination and naming conventions
 Dynamic webpages that don’t create distinct URLs

(http://www.siop.org/jobnet/default.aspx)
 Server-side restrictions, such as crawling speed
 Your own coding skill, attention to detail, and patience

 R is also not particularly
well-suited for crawling
 This is where I suggest you turn

to the scrapy library in Python

This is Why You Want an API

48

 For general information about both R and Python, I strongly recommend
http://datacamp.com

 General Crawling/Scraping Frameworks
 To learn how to use scrapy with Python, I recommend my tutorial:

http://rlanders.net/scrapytutorial.html
 The other big library for web crawling/scraping in Python is Beautiful Soup:

https://www.crummy.com/software/BeautifulSoup/

 Parsing
 To learn basic HTML and CSS: https://www.codecademy.com/learn/web
 To learn how to use XPath: http://www.w3schools.com/xpath/
 To learn how to use regular expressions: https://regexone.com/

To Learn More Technical Bits

