

How to Create a Dataset from Twitter or Facebook: Theory and Demonstration

Richard N. Landers Old Dominion University @rnlanders | rnlanders@odu.edu

ODU STOB Dean's Research Seminar September 2017

Agenda/Learning Objectives

- 1. Foundational Questions
 - Why scrape social media?
 - What are the pros and cons of social media data sources?
- 2. Technical Overview
 - What steps are involved in scraping social media?
 - How are Facebook and Twitter accessed?

- 3. Demonstration
 - Facebook
- 4. Practical Concerns
 - How to learn this skillset
 - Ethical concerns and legal risks

Foundational Questions

Why scrape social media? What are the pros and cons of social media data sources? What is machine learning and how do I use it?

Why scrape social media?

- Why do social media exist?
 - A consequence of the Web 2.0 movement toward interactivity on the internet
 - "user generated content"
- What does user-generated content entail?
 - purposive data
 - user profiles
 - content
 - incidental metadata (see Ghostery on http://abcnews.com)
 - trail of breadcrumbs
- So psychologically, what are social media data?
 - behaviors, the products of person-situation interactions

So what can I do with scraped data?

- Text data is commonly subjected to follow-up data complexity reduction techniques
 - Linguistic Inquiry and Word Count (LIWC)
 - Outputs an enormous variety of summary statistics about text, including linguistic (types of words), psychological (traits), high-level (e.g., authenticity, emotional tone)
 - See Tausczik & Pennebaker (2010)
 - Sentiment
 - Uses existing lexica to classify words as positive or negative (such as LIWC)
 - The Harvard General Inquirer (from Stone, Dunphry, Smith & Ogilvie, 1966)
 - Topic Analysis
 - Latent Dirichlet allocation (LDA) Kosinski, Wang, Lakkaraju, & Leskovec (2016)
- Or don't reduce, if you have enough data and don't want to.

Data Source Theories (and example RQs)

- Develop a list of your assumptions about the data sources you are considering related to:
 - Data origin/population characteristics
 - Why does this website exist?
 - Who owns the data available on this website?
 - Why would someone want to visit this website?
 - Why would a content creator want to contribute?
 - What type of data do content creators provide?
 - Do users pay to participate?
 - Are creators restricted in the kind of content they can contribute?

- Data source theories are the core concept in theory-driven web scraping
- Data structure
 - How are target constructs represented both visually and in code?
 - Is there inconsistency in how target constructs are represented?
 - Do data appear on only one type of webpage?
 - How is user content created and captured?
 - How much content available on each page?
 - Is the content consistently available?

6

Landers, R. N., Brusso, R. C., Cavanaugh, K. J. & Collmus, A. B. (2016). A primer on theory-driven web scraping: Automatic extraction of big data from the internet for use in psychological research. *Psychological Methods*, *21*, 475-492.

Data Source Theories Imply Testable Predictions

- Make predictions based upon what you think must be true to create a complete data source theory with testable predictions (i.e., hypotheses).
- Example
 - RQ: How is political engagement represented in tweets?
 - H: Twitter posts containing the names of politicians represent political engagement.

afunnyguy @afunnyguy · Apr 13 @mytalk1071 dating chat bordering on agism. Calls older people dinosaurs is bullying. Shame @jasonmatheson for allowing this. **#trumpesque**

🖴 1 🔁 📚 🤎

- In traditional data collection, we have these same assumptions but they are generally difficult or impossible to test.
 - Content validation is relatively easy.

Ŵ

Common Assumptions About Social Media

- A huge variety of Facebook data and metadata are available about basically everyone in the United States.
 - **PARTLY TRUE:** Only if their privacy settings allow it.
- Unlimited information about everyone that has ever posted on Twitter is available.
 - PARTLY TRUE: Most people get access to Twitter data via the 'firehose.'
- I can get full job histories about anyone on LinkedIn.
- I can get full job histories about anyone whose privacy settings allow it.
 - FALSE-ISH: This is probably illegal, but this may change soon.
- We'll come back to this in the last section: A lot of web scrapers are criminals.

More Specific Data Source Theories

Facebook

- The data you can scrape vary based upon who you are and what access you have obtained for yourself.
- In practice, there are two ways to do this:
 - Scrape content from public groups/pages
 - Create an app that people sign up for and scrape profile content
- There are time limitations.

Twitter

- Almost all profiles are public, so that's much easier.
- Birthdays may be available.
- Geographic data is available, sort of.
- Search tools don't allow unrestricted access; there are per-query access limits.

Technical Overview

What steps are involved in scraping social media?

Five Steps to Execute a Web Scraping Project

- 1. Identify and pre-emptively evaluate potential sources of information
 - Assumes you already have a RQ/H and some constructs in mind
 - Don't necessarily limit yourself to Twitter and Facebook any webpage can potentially be used
 - Consider construct validity at every step
 - Create a data source theory
 - Think counterfactually: "If X isn't true, my conclusions from this data source will be invalid."
 - Write it down.
 - Develop specific hypotheses that your theory suggests and figure out which ones you can test (assumptions vs. hypotheses).

Five Steps to Execute a Web Scraping Project

- 2. Develop a coding system
 - a) Identify the specific constructs you want to assess
 - b) Determine how those constructs are represented from a technical standpoint
 - a) Are they recoded from text?
 - b) Are they structured pieces of information?
 - c) Where are they? How are they represented?

Steps to Execute a Web Scraping Project

- 3. Code a scraper and potentially a crawler
 - When scraping, data will come from one of two sources depending upon which website's data you're trying to access
 - If an API is available, you want to use the API
 - Returns **structured** data with variables pre-defined
 - Will probably need multiple calls to grab large datasets
 - Legally unambiguous
 - If an API is not available, you'll need to scrape manually
 - Returns unstructured data
 - Requires a lot more work
 - Legally ambiguous in some cases

So what's an API?

- API: Application Programming Interface
 - A data gateway into someone else's system
 - Created by the provider of the service
 - Almost universally intended and designed for real-time access by other websites, but you can use them too
 - Requires learning API documentation they're all different
- Let's start easy. I've created an API at <u>http://scraping.tntlab.org/add.php</u>
- It adds two numbers, x and y.
- Try:
 - <u>http://scraping.tntlab.org/add.php</u>
 - http://scraping.tntlab.org/add.php?x=1
 - <u>http://scraping.tntlab.org/add.php?x=1&y=muffin</u>
 - <u>http://scraping.tntlab.org/add.php?x=1&y=8</u>

What format of data do APIs provide?

- The output of an API can be in essentially any format, but some are more common.
 - If you're lucky
 - CSV: comma-separated values file
 - TSV: tab-delimited data file
 - More than likely
 - JSON: JavaScript object notation
- Both Facebook and Twitter return JSON files
- These APIs also have rate limits in terms of the number of requests you are allowed to send and how quickly; Twitter for example limits to 180 calls every 15 minutes for simple requests and 15 calls every 15 minutes for complex one.
 - For example, only 25 tweets can be returned per simple call, so up to 4500 tweets per 15 minutes

<u>(Ú)</u>

JSON Output from Facebook API

→ X Secure https://graph.facebook.com/853552931365745/feed?access_token=EAACEdEose0cBANJClsJ9dadoE

"data": [

 \leftarrow

"message": "#New_Significance #P_Less_Than_005\n#Type_I_Error\n#Type_II_Error\n#Error_Balance \nI dic average effect size in social psychology) and computed sample sizes for different type-I and type-II error pro alpha = .05, beta = .75 Ratio 1/15\nN = 100, alpha = .05, beta = .50, Ratio 1/10\nN = 200, alpha = .05, beta 338, alpha = .005, beta = .20, Ratio 1/40\nN = 500, alpha = .005, beta = .05, Ratio 1/10\nN = 600, alpha = .06 power, which implies 20\u0025 Type-II errors, we fail to provide evidence for a true hypothesis with effect si far, social psychologists have been using sample sizes of n = 20 per cell (N = 40 total) to chase these effect 75\u0025 and a type-I / type-II error ratio of 1/15. \nIf social psychologists would do a priori power analys times as many participants). \nUsing the same N = 200 and the new significance criterion of p \u003C .005, pc suggesting that type-II errors are much less important than type-I errors. \nTo get back to a 1/4 ratio, sample applies to d = .4, which is an average effect size, meaning power is lower for half of the studies. \nAre we

"story": "Uli Schimmack created a poll in Psychological Methods Discussion Group.", "updated time": "2017-07-27T19:56:44+0000",

"id": "853552931365745 1457448990976133"

}, {

"message": "More comments on #new_significance \n\nIs it better to have no significance (threshold)?
"story": "Uli Schimmack shared a link to the group: Psychological Methods Discussion Group.",
"updated_time": "2017-07-27T19:41:59+0000",
"updated_time": "2017-07-27T19:41:59+0000",

"id": "853552931365745_1458680730852959"

```
},
```

"message": "Hi everybody,\n\nI\u2019m considering using p-curve and/or p uniform as supplementary put dependencies in the data, so to investigate other publication bias indices (trim-and-fill, PET-PEESE, selectic package). \n\nDoes p-curve and p uniform in meta-analysis also assume \nthat all effect size estimates are inc sizes, b) impute a p-value from the aggregated dependent effect size, and c) perform p-curve and/or p uniform I\u2019ve read several papers on these methods, but so far have not seen any discussion on this issue.",

"updated_time": "2017-07-27T19:14:04+0000",

"id": "853552931365745_1458154720905560"

Experiment with the Facebook API

- Go to <u>http://developers.facebook.com/tools/explorer</u> (you'll need to be logged into Facebook)
- Generate a token for yourself ("Get Token")
 - This token will have the permissions that your Facebook account has
- Craft a request using the Explorer, such as:
 - 853552931365745/feed
- Create this same request in your web browser by going to:
 - <u>https://graph.facebook.com/853552931365745/feed?access_token=xxxxx</u> (but replace xxxxx with the copy/pasted token you generated)

Getting What You Want

- Learn the documentation to understand what you can and can't actually scrape
 - Twitter: <u>https://dev.twitter.com/docs</u>
 - Facebook: <u>https://developers.facebook.com/docs/</u>
- The next challenge is to convert the JSON file into a format you want. You can do this in any program you want, but I find R is easiest
 - R package: twitteR
 - R package: Rfacebook

Five Steps to Execute a Web Scraping Project

4. Clean the data and revise the data source theory

- Once you have your data in hand, run all hypothesis tests possible from your data source theory
- You will almost certainly identify problems with your coding system at this stage; time to revise

Five Steps to Execute a Web Scraping Project

- 5. Analyze!
 - Natural language processing
 - Data simplification
 - Simple profile reporting

Demonstration

Facebook

Practical Concerns

How to learn this skillset Ethical concerns and legal risks

Why Do This Yourself?

- The old way
 - URAs hand-coding text (~2 minutes per subject; with 2 coders, at 60 per hour, coding 500 entries would take 8.3 hours of coding time)
- The new way
 - In ~8 hours, we captured >100,000 text entries
- If you don't want to code, you can't use APIs
- If you already know R, you'll find API calls fairly easy
 Does require learning a bit about how the internet works
- You should really learn R anyway

How to Learn This Skillset

- There are two major skillsets involved:
 - HTML, to know how web pages are structured
 - Statistical programming (e.g., in R or Python) in general, to be able to run algorithms
 - Web scraping libraries in R or Python, to run specific extraction algorithms
 - Machine learning libraries in R, Python, SPSS, etc to run analytic algorithms
- To learn HTML, <u>https://www.codecademy.com/learn/learn-html-css</u>
- To learn R, Python, and their libraries: <u>https://www.datacamp.com/tracks/data-scientist-with-r</u> <u>https://www.datacamp.com/tracks/data-scientist-with-python</u>

Ethics and Legal Risks - Hacking

Don't look like a hacker and you won't be treated like one (honeypots)

- Remember to read API documentation (and to authenticate)
- Look for tutorials/examples of those that have done this before
- Don't go hunting for statistical significance with the standard psych toolkit

Ethics and Legal Risks – Fair and Commercial Use

- Fair use: Often unclear what is usable
 - Harvesting data when a policy is in place explicitly forbidding it is definitely unethical and probably illegal (see eBay v Bidder's Edge, 2000 and Ticketmaster Corp vs Tickets.com, 2000)
 - Harvesting data behind a login wall without a policy is probably unethical and probably illegal (APIs protect you from this)
 - Harvesting public data that is not explicitly linked anywhere is probably unethical and probably illegal (see the story of Andrew Auernheimer, aka weev)
 - Harvesting public social media data that is plainly visible through simple web browsing might be ethical but is probably legal
 - A case related to LinkedIn is currently in the court system

<u>رف</u> OLD DOMINION UNIVERSITY QUESTIONS?

http://scraping.tntlab.org

For easily digestible descriptions of new talent analytics technology, see my column in the Industrial-Organizational Psychologist!

For example, natural language processing: http://www.siop.org/tip/april17/crash.aspx

Richard N. Landers Old Dominion University @rnlanders | rnlanders@odu.edu

ODU STOB Dean's Research Seminar September 2017